

TITLE OF PAPER: PAPER-XII - ECOLOGY & ZOO-GEOGRAPHY

**Miss Diksha W. Kanake
Assistant Prof.
Zoology**

UNIT – II nd

CHARACTERISTICS OF POPULATION

- 1. Natality :

Natality, also known as **birth rate**, refers to the rate at which new individuals are born into a population over a specific period of time. It is an essential component of population dynamics, determining the growth of a population alongside mortality (death rate), immigration, and emigration.

KEY ASPECTS OF NATALITY:

- **Expressed as a Ratio:** Natality is usually expressed as the number of births per 1,000 individuals in a population per year. This ratio helps compare birth rates across different populations or regions.
- **Types of Natality:**
 1. **Crude Birth Rate:** The total number of births per 1,000 individuals in a population without accounting for specific demographics like age or gender.
 2. **Specific Birth Rate:** The birth rate of a specific group within the population, such as age-specific birth rates, which measure the number of births for women of a certain age group.

3. Influencing Factors: Natality is influenced by various biological, environmental, and social factors such as:

- Fertility rates
- Availability of healthcare
- Cultural and societal norms
- Economic conditions
- Government policies (e.g., family planning or childbearing incentives)

4. Importance in Ecology and Demography:

- In **ecology**, natality helps assess the reproductive success of species in an environment, influencing population growth and survival.
- In **human demography**, natality is a critical factor in understanding population growth trends, planning resources, and forecasting future population sizes.

Example:

If a population of 10,000 people experiences 150 births in one year, the natality (or birth rate) would be:

$$\text{Birth Rate} = \frac{150 \text{ births}}{10,000 \text{ people}} \times 1,000 = 15 \text{ births per 1,000 people per year.}$$

Thus, natality is a fundamental measure used to understand the reproductive rate and growth potential of populations.

2. Mortality :

Mortality refers to the incidence of death within a population over a specific period of time. It is an essential demographic factor that, along with natality (birth rate), influences population size and growth. Mortality can be measured in various ways and is a critical indicator in fields such as public health, ecology, and demography.

KEY ASPECTS OF MORTALITY:

- ❖ **Expressed as a Rate:** Mortality is often expressed as the **mortality rate** or **death rate**, which is the number of deaths per 1,000 individuals in a population per year.

Types of Mortality:

- **Crude Death Rate:** The total number of deaths per 1,000 people in a population, without considering specific factors like age or gender.
- **Age-Specific Mortality Rate:** The mortality rate within a specific age group, such as infant mortality rate (deaths of children under one year of age) or elderly mortality.
- **Cause-Specific Mortality Rate:** The mortality rate due to a specific cause, such as deaths from heart disease, cancer, or accidents.
- **Infant Mortality Rate:** A key demographic indicator, measuring the number of deaths of infants under one year old per 1,000 live births in a given year.

- ❖ **Factors Influencing Mortality:**
- **Health and medical care:** Access to healthcare services, quality of treatment, and preventive measures directly affect mortality.
- **Nutrition:** Proper nutrition reduces mortality risks, especially in vulnerable populations like children and the elderly.
- **Environment:** Clean water, sanitation, and air quality all influence mortality rates.
- **Living Conditions:** Poverty, war, and living standards also play significant roles in mortality patterns.
- **Epidemics and Pandemics:** Infectious diseases like COVID-19 can cause sharp rises in mortality.
- ❖ **Ecological and Demographic Importance:**
- In **ecology**, mortality impacts population dynamics, species survival, and ecosystem balance.
- In **demography**, mortality trends help governments and organizations plan public health strategies, allocate resources, and predict future population changes.

Example:

If a population of 50,000 experiences 500 deaths in a year, the mortality rate is calculated as:

$$\text{Mortality Rate} = \frac{500 \text{ deaths}}{50,000 \text{ people}} \times 1,000 = 10 \text{ deaths per 1,000 people per year.}$$

In summary, mortality is a vital measure for understanding the health, growth, and stability of populations. It helps in assessing public health challenges, life expectancy, and the effectiveness of medical interventions.

3. Population Dispersal :

Population dispersal refers to the movement of individuals from their place of origin or high population density to new areas. This process plays a crucial role in shaping the distribution of species across different habitats and ecosystems. It helps reduce competition for resources, enables colonization of new areas, and promotes genetic diversity through the mixing of populations.

TYPES OF POPULATION DISPERSAL:

- **Emigration:** The movement of individuals out of a population or area, leading to a decrease in population size in the original location.
- **Immigration:** The movement of individuals into a new population or area, contributing to an increase in population size in the new location.
- **Migration:** A periodic or seasonal movement of individuals between different regions, often in response to environmental changes, food availability, or breeding needs. Migration can be temporary or permanent and is commonly seen in birds, fish, and some mammals.

- **Diffusion:** A gradual spread of individuals from a densely populated area to less populated regions over time. This is usually a slow, natural process as organisms explore or expand into new territories.
- **Jump Dispersal:** A sudden or rapid movement of a species over long distances, often across barriers (e.g., oceans or mountains). This can happen through human activities, such as the introduction of species to new continents (e.g., invasive species), or naturally via wind or ocean currents carrying seeds or spores.

FACTORS INFLUENCING POPULATION DISPERSAL:

- **Resource Availability:** Limited resources (e.g., food, water, or shelter) in one area may push individuals to move to areas with more abundant resources.
- **Competition:** High population density can lead to competition for resources, encouraging individuals to move to less crowded areas.
- **Environmental Changes:** Changes in climate, habitat destruction, or natural disasters (floods, fires) can force populations to disperse.

- **Biological Factors:** Behavior, reproductive strategies, or life cycles of species can drive dispersal. For example, juvenile animals often leave their birthplaces to find new territories or mates.
- **Human Activities:** Urbanization, deforestation, and habitat fragmentation influence dispersal by altering natural habitats. Additionally, human transport (ships, planes) can unintentionally introduce species to new regions.

IMPORTANCE OF POPULATION DISPERSAL:

- **Reducing Intraspecific Competition:** By spreading out, individuals reduce competition for limited resources within the population.
- **Colonization of New Habitats:** Dispersal allows species to occupy new areas, enhancing their range and survival opportunities, especially in the face of environmental changes.
- **Promoting Genetic Diversity:** Dispersal leads to gene flow between populations, which is crucial for maintaining genetic diversity and adaptability within species.
- **Balancing Ecosystems:** The movement of individuals helps regulate population sizes, preventing overpopulation in certain areas while ensuring other areas are not underpopulated.

Example:

- Seed dispersal in plants is a common form of population dispersal. Seeds can be spread by wind, water, animals, or human activity, allowing plants to grow in new locations, far from the parent plant.
- In summary, population dispersal is a critical ecological process that helps species adapt to their environment, reduces resource competition, promotes genetic diversity, and enables the survival of species across various habitats.

